
Computational Biology and Chemistry 94 (2021) 107554

Available online 30 July 2021
1476-9271/© 2021 Elsevier Ltd. All rights reserved.

Research Article 

Modelling the spread of covid-19 in the capital of Brazil using numerical 
solution and cellular automata 
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A B S T R A C T   

The novel coronavirus disease 2019 (COVID-19) still challenges researchers due to its spread and deaths. Hence, 
the classical epidemic SIR and SEIRD models inspired by the epidemic’s outbreak are widely used to predict the 
evolution of the disease. In addition to classical approaches, describing complex phenomena through Cellular 
Automata (CA) is a highly effective way to understand the iterations on a populated system. The present research 
analyzed the usage of CA to generate an epidemic-computational model from a micro perspective based on 
parameters obtained through a statistical fit from a macro perspective. After validating SIR and SEIRD models 
with the government official data for Brasilia, Brazil, the authors applied the obtained parameters to the Cellular 
Automata model. The CA model simulated the spread of the virus from infected to uninfected people in a 
restrained environment (i.e., a supermarket) under several varied conditions applying an approach never 
adopted before. The manner of applying CA in this research proved to represent an essential tool in predicting the 
spread of the coronavirus in confined spaces with random movements of people. The CA numerical open-source 
presented has the purpose of clarifying how the spread occurs not only as a mathematical curve but in an organic 
way. The numerical simulations from the CA model allowed the authors to conclude that markets and stores are 
relevant places where might be infections. Thus, every local store and the market owner should reason about the 
aspects that could avoid the spread of the disease, coming up with efficient solutions. Each environment has 
specific features that only those who know them are the ones capable of managing.   

1. Introduction 

The coronavirus (COVID-19) epidemic generates significant social, 
economic, and health impacts, highlighting the importance of real-time 
analysis (Tan and Chen, 2020). Continuous models, usually described in 
ordinary nonlinear differential equations, have formed a significant part 
of the traditional mathematical epidemiology literature (Var
gas-De-León, 2011). Among these models, the predictive model of 
epidemic phenomena called SIR (Susceptible-Infective-Recovered), and 
SEIR (Susceptible-Exposed-Infective-Recovered) are frequently used to 
investigate infection data and epidemic outbreak. These models repre
sent one of the most adopted mathematical models to predict different 

contagion situations. However, sufficient data need to be available. 
Then these models can be applied to choose the best restriction and 
lockdown measures and other restrictive measures in different sectors in 
the society. 

The basis of the SEIR model is a series of dynamic ordinary differ
ential equations that consider the population subjected to contagion and 
the trend over time of individuals who recover after infection (Godio 
et al., 2020). The SEIRD model (a version of SEIR) includes death in 
modeling, and epidemiologic studies use similar models (Korolev, 2020; 
Lin et al., 2020; Wang et al., 2020). The SEIRD model considers five 
groups of people: susceptible (S), exposed (E), infectious (I), recovered 
(R), and dead (D). As a result, the SEIRD model should reflect the 
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epidemic’s progression more accurately than a more conventional SIRD 
model that does not include an incubation period. 

Manners to address and understand the complexity in nature are of 
great interest to the scientific community. Moreover, as the amount of 
available computing power grew during the past three decades, the 
study of dynamical systems has intensified considerably (Ozelim et al., 
2016). The Cellular Automata (CA) approach is a numerical method that 
models time-based and phenomena-based logical components and 
discrete nature. Describing complex phenomena using cellular automata 
(CAs) has shown to be a promising approach in pure and applied sci
ences (Ozelim et al., 2012). The rules of a Cellular Automata case are 
usually simple, i.e., have basic rules describing the behavior of the cells. 
The abundance of cells and distinct boundary and initial conditions can 
generate complex or unexpected results. CA has been studied for a 
reasonable time (Von Neumann and Morgenstern, 1945; Conway, 1978) 
and has been extensively explored by modern scientists (Wolfram, 2002; 
Zubeldia et al., 2016; Ozelim et al., 2018; Wolfram, 2018). 

In this research, the data of COVID-19 from the Federal District, 
Brazil, was used to validate the SIR and SEIRD model results. The 
collected epidemic data from the Ministry of Health of Brazil (Brazil, 
2020a) and the Federal District Secretary of Health (Brazil, 2020b) from 
February 23th to November 2th, 2020, studied the approximation of the 
actual and simulated data. After fitting the parameters, the authors 
simulated the cellular automata for various scenarios of the spread of 
COVID-19 in a supermarket. 

2. Model description 

2.1. SIR Model 

Kermack and McKendrick (1975) created the susceptible (S) - 
infected (I) - recovered (R) model, which describes the dissemination of 
a particular communicable disease in a susceptible population of size N. 
The spreading of the virus (COVID-19) occurs when infected people 
transmit the illness to susceptible individuals. The transmissible period 
starts before the symptoms appear and extends throughout the whole 
course of the disease until the patient’s recovery. R is the compartment 
used for the population infected and then removed from the disease 
state, either due to immunization or to death. Those in this category are 
not able to be infected again or transmit the infection to others. 

The SIR (Susceptible, Infected, Recovered) model has the following 
variables: S(t) is the susceptible population; I(t) is the population who 
get laboratory positive confirmation and with infectious capacity; R(t) is 
the recovery cases; N = S + I + R is the total population; β is the infection 
ratio; λ is the coefficient used in the cure rate; 

The following ODE system describes the mentioned variables: 

dS(t)
dt

= − βS(t)
I(t)
N

(1)  

dI(t)
dt

= βS(t)
I(t)
N

− λI(t) (2)  

dR(t)
dt

= λI(t) (3) 

The model’s initial values are S0 (t = 0), I0 (t = 0) and R0 (t = 0). 
These are the number of people in the susceptible, infected, and 
recovered categories at a time equal to zero. 

2.2. SEIRD Model 

The SEIRD (Susceptible, Exposed, Infected, Recovered, Death) model 
has the following variables: S(t) is the susceptible population; E(t) is the 
population exposed to the virus but not infected in the latent period; I(t) 
is the population with positive laboratory confirmation and with infec
tious capacity; R(t) is the recovered cases; D(t) is the death number; N =

S + E + I + R + D is the total population; γ− 1 is the average latent time; κ 
is the coefficient used in the mortality rate. 

The following ODE system describes the mentioned variables: 

dS(t)
dt

= − βS(t)
I(t)

N − D(t)
(4)  

dE(t)
dt

= − γE(t) + βS(t)
I(t)

N − D(t)
(5)  

dI(t)
dt

= γE(t) − κI(t) − λI(t) (6)  

dR(t)
dt

= λI(t) (7)  

dD(t)
dt

= κI(t) (8) 

The model’s initial values are S0 (t = 0), E0 (t = 0), I0 (t = 0), R0 (t =
0), D0(t = 0). These are the number of people in the susceptible, infected, 
recovered, and death categories at time equal zero. 

2.3. Cellular Automata 

Cellular Automata represents entities within a discrete space that 
have determined rules of behavior. These cells, contained in a mesh and 
having a set of behavioral rules, can interact with each other and affect 
their states over time. This numerical method is compatible with un
derstanding disease contamination in a controlled environment in its 
precise nature. While using the Cellular Automata approach, the inten
tion is to maintain a local perspective of how contamination works in a 
small time frame and limited space. On the other hand, the analytical 
models have a global approach, both in population size and time, 
showing the population passing through the disease cycles. Hence, the 
Cellular Automata simulation is not a replication of the global 
perspective, but rather it focuses on the analytical model, with a space 
and time glimpse of a general and broader context. 

The particular Cellular Automata Model applied in this study rep
resents a discrete model that intends to mimic a pseudorandom pattern 
of people’s movement within a supermarket. The description of the 
model is through conditional statements with both deterministic and 
stochastic parameters. The goal of the Cellular Automata model is to 
obtain a micro perspective on contamination. It will be considered only 
two possible states for the people (Pstate) in the supermarket: those who 
are susceptible (0) and those who are infected (1). Note that the infected 
ones here do not show any symptoms but are still capable of contami
nating others. This assumption can be reasonably required because most 
rules do not allow symptomatic people to enter constrained environ
ments such as supermarkets. 

Moreover, there is one parameter to be adjusted in the simulation, 
which is βCA. The βCA parameter is the probability of an infected human 
transmitting the virus to a susceptible person while they are neighbors. 
Each iteration and every person generate a specific arbitrary number 
called the person’s chance (PC). All chances vary from 0 to 1. Suppose a 
susceptible person gets in contact with infected persons. In that case, the 
sum of the infected neighbors times βCA should be greater than the 
person’s possibility to be infected. Mathematically the model can be 
described as: 

Pstate =

[
NI .βCA

PC

]

(9)  

where Pstate is the person’s state (0 for susceptible and 1 for infected); NI 
is the number of infected neighbors a person has; βCA is the numeric 
parameter subjected to calibration, and PC is the person’s chance. Note 
that Eq. 9 is valid only for those who are still susceptible and uninfected. 
Those who are infected do not change over the simulated period. 
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To better understand how the Cellular Automata rules work, the 
following images illustrate the proposed model. First, Fig. 1.a shows an 
uninfected person represented by a green cell in a mesh. The model 
understands that the person’s state cannot change if it has no interaction 
with the environment (i.e., people) around it. Also, suppose it is the case 
that the environment only includes healthy people (Fig. 1.b). In that 
case, there are no possible infections. 

Moreover, Fig. 2 shows infected persons represented by yellow cells 
with a central uninfected person in green. The uninfected person can 
interact with the close neighbors in a safe configuration (Fig. 2.a) or in a 
non-safe distance (Fig. 2.b). In Cellular Automata theory, the last 
configuration is called the Moore neighborhood (Fig. 2.b). Those who 
are not close enough (Fig. 2.a) cannot infect others, as assumed in the 
model. Therefore, just the immediate neighbors (Fig. 2.b) are the 
transmitting vectors. 

If an uninfected person has more infected neighbors, then there is a 
greater chance to get infected and change his/her state. For instance, if a 
person has two infected neighbors (Fig. 3.b), then the chance to get 
infected will be two times greater than if there is only one infected 
neighbor (Fig. 3.a). 

As stated before, for each numerical iteration, a variable denomi
nated chance (P) is designated for a person. The chance (P) randomly 
varies from 0 to 1, changing in every iteration. Also, every infected 
person has a probability of infection denominated βCA. Hence, if the sum 
of infected neighbors times the βCA parameter is greater than the chance 
(P), the healthy person gets infected. 

The Cellular Automaton algorithm uses a pseudorandom function to 
allocate each person in a neighbor spot without conflicting with the 
nearby people nor the supermarket itself. Each person can move to 
another cell for every simulated step, which was previously empty and 
does not conflict with other people’s future move. If there is no available 
spot, the person remains in the same place. The following image (Fig. 4) 
shows an example of how movement occurs." 

One crucial aspect of being incorporated in the modeling is the safe 
distance factor. Vyklyuk et al. (2021) pointed out that one of the most 
effective ways to prevent infection is to keep a safe distance consciously. 
However, results discussing the effects of social distance in modeling the 
spread of COVID-19 in small places (e.g., supermarkets) in Brazil are not 
present in the literature or are not well established. Thus, in this paper, 
the impact of introducing the safe distance was not considered in the CA 
modeling. 

3. Data Source 

Using data of the total number of cases, number of deaths, number of 
recovered, and number of infected people from the public data of the 

Ministry of Health of Brazil (Brazil, 2020a) and the Federal District 
Secretary of Health (Brazil, 2020b), the parameters were estimated. 

4. Models implementation 

4.1. SIR and SEIRD 

The authors implemented the coronavirus data and models (SIR and 
SEIRD) using Wolfram Mathematica 12.1 software. The Para
metricNDSolve solved Eqs. 1 to 3 (SIR) and Eq.s 4 to 8 (SEIRD). The use of 
the NonlinearModelFit function allowed to obtain the adjustment pa
rameters of the SIR model (Io, β, and λ) and the SEIRD model (Io, β, λ, γ, 
and κ). 

4.2. Cellular automata simulation 

The Cellular Automata simulation represents a small time frame and 
limited space representation of the analytical models. It is comparable to 
a minor part of the infected and susceptible curves from SIR and SEIRD 
models. Once the analytical models involve more states (those who 
recovered, died), they also include more parameters. Thus, it is unfea
sible to compare every feature. However, the β parameter can be 
compared to the βCA parameter of the Cellular Automata model. 

The βCA parameter in the Cellular Automata model is the probability 
of an infected person transmitting the virus and infect a susceptible one. 
The β parameter of the SIR model considers a distinct definition. The 
average number of contacts per person per time is multiplied by the 
probability of disease transmission in contact between a susceptible and 
an infectious subject. Therefore, both parameters are intrinsically 
related. Correcting the value of βCA and varying the number of people on 
the simulation, one can achieve the desired β parameter (fitted from the 
SIR/SIERD model). 

With this correlation, the numerical establish scenarios where the 
analytical model’s parameter can be found. Moreover, the practical 
concern is to understand how the population size variation influences 
the β parameter. The flowchart of Fig. 5 shows the essential idea of the 
simulations. 

Each complete flow, end to end, result in two practical simulations - 
one with a smaller population another with a higher population. The 
first simulation matches the SIR model parameter, and the last allows 
one to understand the changes in this parameter. At the same time, the 
βCA is constant while the community size changes from the previous 
simulation. 

The simulated scenarios occur in a supermarket where each mesh 
cell is a 0.6 m sized square. Each person is a colored cell that can move 
randomly across the supermarket’s white space and its entrance 

Fig. 1. Uninfected person isolated (a) and surrounded by others uninfected (b).  
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proximities. The yellow cells correspond to the infected (1), while green 
cells are susceptible (0). The gray cells represent the supermarket 
structure and constrain the movement of the population. The total 
period of the simulation is 180 min. The time step is 1 min, which is 
when every interaction between people and movement occurs. 

5. Results and discussion 

5.1. Application of SIR and SIERD models 

The adjustment of the data made available from COVID-19 in the 
Federal District for the SIR and SIERD models considered 02/23/2020 as 

t = 0. The adjusted data refer to 11/2/2020 (t = 253 days). 
Figs. 6,7 and 8, show the model fitting for data from COVID-19 in 

Brasilia. The solid lines are the simulated values using SIR and SEIRD 
models, and the points are the data collected. Table 1 shows the adjusted 
parameters. Both models had their parameters (those that are similar) 
reasonably the same. 

The Akaike information criterion (AIC) (Akaike, 1974) made a 
comparison between both models. The AIC is a technique based on the 
sample fit to estimate a model’s likelihood to estimate future values. The 
quality of the model is the one that has minimum AIC. The SIR model 
had an AIC of 9177.53, and the SEIRD model had 13.485,9. Thus, the 
SIR model was better than the SEIRD model. However, the latter is more 

Fig. 2. An uninfected person surrounded by infected persons (a) and unsafe (b) conditions.  

Fig. 3. An uninfected person surrounded by one (a) and two (b) infected neighbors.  

Fig. 4. Cellular Automaton algorithm illustration.  
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crucial to obtain the number of dead people. 

5.2. Cellular automata scenarios 

The simulation considered four scenarios applying the Cellular 
Automata model (Table 2). Two simulations correspond to the SIR 
parameter value (βSIR). The other two do not match the analytical 

parameter but keep the numerical parameter value with changes in the 
population size. The CA simulations consider the beta model of the SIR 
model. However, the time of the simulations is too short to consider any 
recovery of the population (λ→0), making the SIR model behave as the 
SI (susceptible and infected) model. Therefore, CA simulations do not 
consider the recovered people and focusing on the susceptible and 
infected. 

The first and the fourth simulations describe 20 people inside the 
supermarket, while the second and the third simulations represent 100 
people. The difference in size between the populations is 400 %, but the 
initial proportion of infected and susceptible is the same. The parame
ters are observed not by a unique simulation but through the average of 
several simulations and thirty simulations for each parameter. Each 
simulation has stochastic parameters related to both the movement and 
the chance of being infected. Thus, it was necessary to run each case 
several times to find a mean curve. 

Fig. 9 shows the supermarket occupation. Not only have people in
side it, but also by its entrance, as stated before. Fig. 9.a stands for the 
case where there are only 20 people, where Fig. 9.b has a total of 100 
people. 

The simulations of scenarios 1 and 2 compose a pair, described in the 
flowchart of Fig. 5, and they share the exact parameters of Table 2, 
respectively. Fig. 10 shows the initial simulation (t = 0) for all scenarios. 
Fig. 11 shows the simulation in the time of 90 min for all scenarios. 
Fig. 12 shows the simulation for 180 min for all scenarios. Figs. 13 and 
14 show the variation of the number of persons infected and susceptible 
for scenarios 1 and 4 and 2 and 3, respectively. 

Scenario 1 describes where the β parameter is equal to 0.16, repre
senting the value obtained on the analytical curves, as seen in Table 2. 
This simulation takes only 20 people, where four are initially infected 

Fig. 5. Methodology of the cellular automata method.  

Fig. 6. Fitting of SIR model.  

Fig. 7. Fitting of SEIRD model.  

Fig. 8. Fitting of SEIRD model (infectious and death).  

Table 1 
Parameters estimated by SIR and SEIRD models.  

Parameter SIR SIERD 

β 0.160664 0.164682 
λ 0.116857 0.117336 
γ− 1 – 2.2703 
κ – 0.002044  

Table 2 
Parameters and initial conditions of the numerical simulations.  

Scenario 
Parameter Initial state 

βCA β Infected Susceptible 

1 0.025 0.16 4 16 
2 0.025 0.90 20 80 
3 0.005 0.160 20 80 
4 0.005 0.016 4 16  
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and 16 are susceptible (Fig. 10.a). Conducting 30 simulations and 
assuming their average, it is possible to represent the mean curve and 
the distribution for each scenario. Also, one of these 30 simulations 
represented the evolution of the state through time for each scenario. 
These particular simulations were randomly chosen and represent every 
30 min out of the 180 min simulation. Figs. 11.a and 12 .a show scenario 
one at 90 min and 180 min, respectively. On the mean curve charts 
(Figs. 13 and 14), the continuous lines represent the mean curves, while 
each scattered dot corresponds to a specific time and population size of 
one out of the 30 simulations 

Scenario 2 (Figs. 10.b, 11 .b and 12 .b) has 100 people - 20 infected 
(yellow) and 80 susceptible (green). In this second simulation, the βCA 
parameter is kept the same as the first one, which implies a different β 
parameter, once there is an increase in the population. As expected, the β 
parameter has significantly increased. 

Scenarios 3 and 4 compose a pair, either. Simulation 3 (Figs. 10.c, 11 
.c and 12 .c) begins with 100 people - 20 infected and 80 susceptible. 
This simulation has the same β parameter as the one found in Table 4 
from the analytical fit. Similar to the previous cases, one simulation was 
chosen to be represented by 30 min steps. This specific simulation shares 
the same parameters as seen in Table 2. 

Then, simulation 4 (Figs. 10.d, 11 .d, and 12 .d) keeps the same 
numerical parameter βCA, but with a smaller population - a total of 20 
people with 4 infected and 16 susceptible. This simulation shows how a 

reduced number of people in a constrained space drops to close to zero 
infections, even though there are intense movements for three consec
utive hours (Fig. 13). 

An aspect of being highlighted is that the parameter βCA is linearly 
inversely proportional to the population simulated. When the popula
tion is multiplied by five, to have the same β parameter, the numerical 
parameter βCA needs to be divided by five. 

As it can be interpreted from the charts (Figs. 13 and 14), if the 
numerical parameter βCA is constant, but the population simulated in
creases, it results in more infected cases. An increase of the allowed 
population inside a constrained environment accentuates the curve 
steepness. The chart results, although they required computational 
effort, could be qualitatively generated purely by inspection. Hence, all 
standard policies must be more careful to avoid crowded stores and 
supermarkets. 

Moreover, Fig. 14 shows that if one significantly reduces the number 
of people inside an environment, the number of infections drops to 
marginally zero. Markets can be environments of a significant number of 
infections. Thus, policies should allow stores and supermarkets to open 
for more extensive periods throughout the day and regulate the number 
of people. 

The chart in Fig. 15 is a numerical curve based on a tridimensional 
interpolation of scattered points. The curve demonstrates how the 
number of newly infected people happens after a 180 min interaction in 

Fig. 9. Sample initial condition for (a) 20 people and (b) 100 people.  

Fig. 10. Initial condition of simulation for (a) scenario 1 (b) scenario 2, (c) scenario 3, (d) scenario 4.  
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the supermarket, for different infection rates and the total number of 
people. This curve has a fixed initial rate of 20 % of infected to 80 % of 
susceptible. As one can notice, the curve becomes steeper when both the 
β parameter and the number of people are higher than 0.015 and 60, 
respectively. 

Fig. 16 shows the simulation for an initial simulation with 80 sus
ceptible people and 20 infected people. The simulation refers to the 
transient variation in the number of infected people for different values 
of βCA. In the case of a higher βCA value, the greater is the spread of the 

disease. Thus, the knowledge of this parameter is of great importance so 
that the spread of the COVID-19 in small spaces is coherently known 
using the CA theory. 

Schimit (2020) simulated through a Probabilistic Cellular Automata 
the evolution of COVID-19 in Brazil. The mathematical model presented 
describes the disease in-depth, with eight possible states with 15 pa
rameters to be adjusted. The purpose of this probabilistic model was to 
describe the spread of the disease from a macro perspective, considering 
its cycle and all possible situations, along with the analysis of lockdown 

Fig. 11. 90 min of simulation (a) scenario 1 (b) scenario 2, (c) scenario 3, (d) scenario 4.  

Fig. 12. 180 min of the simulation of (a) scenario 1 (b) scenario 2, (c) scenario 3, (d) scenario 4.  
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and healthcare conditions. Although the discrete model presented in this 
study is also a Probabilistic Cellular Automata, there are two main dif
ferences from what the author shows. First, the current intent is to 
simulation a micro perspective - the spread of the novel coronavirus in a 
confined space within a few hours. Thus, the model does not require as 
many parameters or states because only susceptible and asymptomatic 
are present in this space. Second, the confined space where the cellular 
automata elements are placed does have a geometric meaning - the re
strictions of movements represent a market. Schimit (2020) does not 
mention any unique geometry of the simulated mesh or discuss ele
ments’ movement. 

6. Conclusion 

The traditional mathematical epidemiology theories are appropriate 
tools to understand and predict the time evolution of disease outbreaks. 
These tools are valuable to guide countries and cities in decision- 
making. 

In this research, the classic SIR and SEIRD models helped predict and 
obtain parameters and the number of susceptible, infected, and deceased 
people in Federal District, Brazil. The simulations were supplemented by 
recorded data from the Ministry of Health of Brazil and the Federal 
District Secretary of Health. The fitted simulation indicated good 
agreement with the data, and the obtained parameters allowed good 
results. 

After predicting the SIR and SEIRD parameters, the cellular autom
aton simulated a supermarket case using the parameters obtained in the 
models. Thus, the lockdown policy used in many cities across Brazil, 
which closed retail and department stores, has to be more careful about 
not redirecting people to supermarkets. The present simulations lead to 
the perception that markets and stores are relevant places with in
fections. Thus, every local store and the market owner should reason 
about the aspects that could avoid the spread of the disease, coming up 
with their solutions. Another practice limiting supermarkets’ opening 
and closing times, which may increase people’s concentration inside 
constrained environments, is not recommended. 
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